
Dynamic Adaptation of Aspect-Oriented Components

Cristóbal Costa1, Jennifer Pérez2 and José Ángel Carsí3

1,3Department of Information Systems

and Computation
Polytechnic University of Valencia

Camino de Vera s/n, 46022 Valencia, Spain

2Department of Organization and
Information Structure

Polytechnic University of Madrid
Ctra. Valencia, km7, 28051 Madrid, Spain

ccosta@dsic.upv.es, jeperez@eui.upm.es, pcarsi@dsic.upv.es

Abstract. Current works address self-adaptability of software architectures to
build more autonomous and flexible systems. However, most of these works
only perform adaptations at configuration-level: a component is adapted by
being replaced with a new one. The state of the replaced component is lost and
related components can undergo undesirable changes. This paper presents a
generic solution to design components that are capable of supporting runtime
adaptation, taking into account that component type changes must be
propagated to its instances. The adaptation is performed in a decentralized and
autonomous way, in order to cope with the increasing need for building
heterogeneous and autonomous systems. As a result, each component type
manages its instances and each instance applies autonomously the changes.
Moreover, our proposal uses aspect-oriented components to benefit from their
reuse and maintenance, and it is based on MOF and Reflection concepts to
benefit from the high abstraction level they provide.

Keywords: runtime adaptation, dynamic evolution, component adaptability,
reflection, CBSD, software architectures, AOSD

1 Introduction

Complex software systems frequently undergo changes during their lifetime. This is
due to the fact that they are exposed to many sources of variability and also have a
dynamic nature. It is very common for unforeseen bugs to appear during system
execution, and they will have to be corrected at run-time. In order to address this
software adaptability, most approaches modify the subsystem that must be updated
offline, and once the modification has been completed, they restart the entire system
to reflect the new changes. However, this solution has several disadvantages: (i) the
state of the system that is running is lost, unless it has been previously saved; (ii) the
shutdown and restart processes of the system could increase the performance cost;
(iii) a lot of complex systems cannot stop their activity (such as servers or real-time
systems). As a result, a solution that overcomes these disadvantages must be
provided.

This work focuses specifically on two approaches of software development that
improve the reuse, maintenance and adaptability of software. They are the

Costa, C., Pérez, J., Carsí, J.A.: Dynamic Adaptation of Aspect-Oriented Components.
In: Schmidt, H.W., Crnkovic, I., Heineman, G.T., Stafford, J.A. (eds.) Component-Based Software Engineering 2007.

Lecture Notes in Computer Science, vol. 4608, pp. 49-65. Springer, Heidelberg (2007)
ISSN 0302-9743 - ISBN 978-3-540-73550-2

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

Component-Based Software Development (CBSD) approach [10, 33] and the Aspect-
Oriented Software Development (AOSD) approach [15, 16]. CBSD reduces the
complexity of software development and improves its maintenance by increasing
software reuse and independence. CBSD decomposes the system into reusable and
independent entities called components. By extension, these advantages are provided
by software architectures [26, 30] since architectural models are constructed in terms
of components and their interactions.

Both software architectures and AOSD facilitate software adaptation. On the one
hand, software architectures allow us to focus on changes at the component level
instead of changes at the implementation level. Software architecture adaptability is
managed in terms of the creation and destruction of component instances and their
links. This kind of adaptation is called Dynamic Reconfiguration or Structural
Dynamism [8], which has been explored by a lot of research works [3]. However,
most of these works only address dynamic adaptation at the architectural level. The
internal adaptation of running components is not considered: a component is adapted
offline and then the old component (which is running) is replaced with the adapted
one. In several cases, runtime component replacement is not enough if the
preservation of the component state is mandatory; for instance, when a component
needs to be extended with new properties (such as security, persistence, etc.) and its
functional state and properties are not modified. In order to support self-adaptability
of software architectures, a solution that allows us to both internally update a
component at runtime and to preserve the old state not subject to change must be
provided.

On the other hand, Aspect-Oriented Models propose the separation of the
crosscutting concerns of software systems into separate entities called aspects. This
separation avoids the tangled concerns of software and allows the reuse of the same
aspect in different entities of the software system (objects, components, modules,
etc.). This separation of concerns also improves the isolated maintenance of the
different concerns of the software systems. Aspect-Oriented Software Development
(AOSD) [15] extends the advantages that aspects provide to every stage of the
software life cycle. For this reason, several proposals for the integration of the aspects
in software architectures have emerged [5, 6]. AOSD allows us to manage changes
from the different concerns in an independent way. This facilitates evolution and
provides flexibility to adapt components by adding or removing aspects to software
architectures. In addition, interaction policies between different concerns of software
architectures can be easily changed by adding or removing aspect synchronizations.

 This paper proposes a solution to support the dynamic component adaptation of
aspect-oriented software architectures. Specifically, the solution is based on the
PRISMA approach, which combines AOSD with software architectures. The dynamic
adaptation proposal that is presented in this paper provides mechanisms for
dynamically changing the internal structure of PRISMA components. This internal
change preserves the component state and minimizes the impact of the change on
other components that are connected to the updated component. In addition, this
proposal takes into account that component type changes must be propagated to each
one of its running instances, so the needed mechanisms are also described.

This paper is structured as follows. The PRISMA approach is introduced in section
2. Section 3 presents the two concepts on which our proposal is based: MOF and

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

Computational Reflection. In section 4, our proposal to support dynamic adaptation of
component types is presented in detail. Related works that address runtime component
adaptation are discussed in section 5. Finally, conclusions and further works are
presented in section 6.

2 PRISMA

PRISMA is an approach to develop technology-independent, aspect-oriented software
architectures [22]. It integrates software architecture and AOSD in order to take
advantage of the two approaches. The PRISMA approach is based on its model [24]
and its formal Aspect-Oriented Architecture Description Language (AOADL) [23].

In order to define our software adaptation proposal, we chose PRISMA from the
different approaches that combine AOSD and software architectures because of the
advantages that it offers. Its main advantages are the following: (1) components and
aspects are independent of each other, so they provide good properties for dynamic
evolution; (2) the PRISMA model is completely formalised and its AOADL is a
formal language, so the evolution requirements of our proposal can be easily
formalized; (3) PRISMA software architectures can be automatically compiled for a
technological platform and a programming language using code generation
techniques; and (4) a PRISMA tool has been developed to cope with the challenge of
developing aspect-oriented software architectures following the Model-Driven
Development (MDD) paradigm [12, 19].

The PRISMA model introduces aspects as first-order citizens of software
architectures. As a result, PRISMA specifies different crosscutting concerns
(distribution, safety, context-awareness, coordination, etc.) of the software
architecture using aspects. From the aspect-oriented point of view, PRISMA is a
symmetrical model [13] that does not distinguish a kernel or core entity to encapsulate
functionality; functionality is also defined as an aspect. A concern can be specified by
several aspects of a software architecture, whereas a PRISMA aspect represents a
concern that crosscuts the software architecture. This crosscutting is due to the fact
that the same aspect can be imported by more than one architectural element (i.e. a
component or a connector) of a software architecture. In this sense, aspects crosscut
those elements of the architecture that import their behaviour (see Figure 1).

Figure 1. Crosscutting-concerns in PRISMA architectures

The PRISMA approach takes advantage of the notion of aspect from the beginning
of the system definition. The change of a property only requires the change of the

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

aspect that defines it, and then, each architectural element that imports the changed
aspect is also updated. A PRISMA architectural element can be seen from two
different views: internal and external. In the external view, architectural elements
encapsulate their functionality as black boxes and publish a set of services that they
offer to other architectural elements (see Figure 2.A). These services are grouped into
interfaces to be published through the ports of architectural elements. As a result,
ports are the interaction points of architectural elements.

The internal view shows an architectural element as a prism (white box view).
Each side of the prism is an aspect that the architectural element imports. In this way,
architectural elements are represented as a set of aspects (see Figure 2.B) and their
synchronization relationships,which are called weavings. A weaving indicates that the
execution of an aspect service can trigger the execution of services in other aspects.
The weaving process of an architectural element is composed of a set of weavings.

Figure 2. Views of an architectural element

In PRISMA, in order to preserve the independence of the aspect specification from
other aspects and weavings, weavings are specified outside aspects and inside
architectural elements. Weavings weave the different aspects that form an
architectural element. As a result, aspects are reusable and independent of the context
of application, which facilitates their maintenance.

3 MOF+Computational Reflection

In order to illustrate our proposal, we use a simple case study throughout the paper.
This case study consists of a robotic arm whose movements are controlled by
different joints: Base, Shoulder, Elbow, Wrist and Gripper. These joints are modeled
as instances of a Joint component type. The specific initialization values of each Joint
instance are provided at its instantiation. The behaviour of the Joint is defined by two
aspects: (i) a functional aspect, Fun, which defines how the movements are sent to
each hardware robotic joint, and (ii) a safety aspect, Saf, which checks that the Joint
movements are between the maximum and minimum values that are allowed to
ensure the safety of the robotic arm and its environment. Services are exported to
other components through the port OperPort.

One of the most important non-functional requirements of the Joint component is
that its instances are going to be executed for long periods of time in an high
availability software system. Thus, if an update is needed, it will have to be applied at
runtime without disturbing the system execution. For this reason, the Joint component
provides an evolution infrastructure to support its runtime adaptation without forcing
the system to be restarted. In our case study new requirements emerged after the

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

execution of the Joint component, specifically, the inclusion of an emergency service
to instantly stop all the robotic movements. This requirement involves the adaptation
of the safety aspect. A new component type, called Updater, was developed to replace
the old safety aspect (Saf) by a new one (Saf2) at runtime.

The evolution infrastructure proposed in this work is based on several key
concepts. First, to be able to evolve components, we must distinguish between
component instances and component types, since they are placed at different
abstraction levels. The OMG Meta-Object Facility (MOF) specification [20] allows us
to clearly distinguish between types and instances in a proper and elegant way. MOF
defines a four-level “architecture” that is focused on Model-Driven Development
[19]. Its main purpose is the management of model descriptions at different levels of
abstraction and their static modification. The upper layer (M3) is the most abstract
one (see M3 layer, Figure 3). This layer defines the abstract language used to describe
the entities of the lower layer (metamodels). The MOF specification proposes the
MOF Model as the abstract language for defining all kind of metamodels, such as
UML or PRISMA.

Figure 3. Meta-Object Facility (MOF) layers and PRISMA Components

The metamodel layer (M2) defines the structure and semantics of the models
defined at the lower layer. The PRISMA metamodel is defined at this level: PRISMA
components are an aggregation of Aspects, Ports, and Weavings (see M2 layer, Figure
3). Component behaviour is defined by importing aspects and by synchronizying
them through the use of weavings. Published services are defined through the use of
ports. The M1 layer comprises the models that describe data. These models are
described using the primitives and relationships described in the metamodel layer
(M2). PRISMA component types (i.e.: Joint and Updater) are placed in the M1 layer
(see M1 layer, Figure 3). For instance, the Joint component imports two aspects: a
Functional aspect and a Safety aspect (see Fun and Saf aspects, M1 layer, Figure 3),
which are synchronized through a weaving. In addition, services from the Functional
aspect are provided to other components through a port.

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

The semantics of the PRISMA metamodel (described at the M2 layer) defines that a
component type (described at the M1 layer) can be instantiated. These instances (i.e.
PRISMA component instances: Base, Elbow, UpdSafety, etc.) are placed in the lowest
level, the M0 layer (see M0 layer, Figure 3) and behave as described in the component
type.

However, the MOF specification was designed to specify and manage technology-
neutral metamodels from a static point of view. MOF does not describe how to
address the dynamic adaptation of its elements at run-time. For this reason, the
Computational Reflection concept [17, 31] is used to provide dynamic adaptation to
models (in this case, component types). Computational Reflection is the capability of a
software system to reason about itself and act upon itself. In order to do so, a system
must have a representation of itself that is editable and that is causally connected to
itself. Thus, the changes that are made in this representation (which is managed as
data) will be reflected on the system, and vice versa. Therefore, a system has two
different views of itself: the base-view and the meta-view (see Figure 4.A). The base-
view “executes” the system business logic behaviour and modifies a set of values that
define the process state. The meta-view defines how the system behaves; it is a
“description” of the system. This view allows the system to change its behaviour by
modifying its representation. The process of obtaining an editable representation of
the system (the meta-view) is called reification, and the opposite process is called
reflection (see Figure 4.A). The main advantage of computational reflection is the fact
that it describes system self-adaptation in a simple and natural way.

Figure 4. Dual views of a reflective system

The PRISMA metamodel describes the component structure and behaviour by
means of aspects, weavings, and ports (see M2 layer, Figure 3). For this reason, the
meta-view of a PRISMA component type is an editable data structure (composed of
aspects, ports, and weavings) that “describes” the component type behaviour. For
instance, the meta-view of the Joint component type describes a component that is
made of: (i) the aspects Fun and Saf, (ii) a port OperPort, and (iii) a weaving between
the aspects Saf and Fun (see Type description, Figure 4.B). The base-view of a
PRISMA component type is the “execution” of these aspects, ports, and weavings
“described” in the meta-view. For instance, the base-view of the Joint component type
is the set of all its instances: Base, Elbow, Shoulder, etc. (see Type, Figure 4.B)

The abstraction layers provided by MOF and the capability to describe self-
adaptation provided by Computational Reflection allow us to define the necessary
infrastructure to dynamically adapt the internal component structure. In this work, we
focus only on component types (M1 layer) and component instances (M0 layer). Each

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

component type has a dual view: the base-view and the meta-view. However, each
view is in a different MOF layer (see Figure 5) as described below.

Each component instance (i.e.: Elbow, Wrist, …) is a running process which has its
own state and behaves as the component type (i.e.: Joint) specifies. Thus, the
behaviour of the instance is “provided” by the component type base-view (i.e. the
running type, see base-view1 at M0, Figure 5 below). This behaviour is “described”
by the component type meta-view at the upper layer (see the meta-view1 at the M1
layer, Figure 5).

Moreover, the component type can be viewed as a running process that also has
state and behaviour: (i) the state is the component type meta-view (an editable
representation of itself), and (ii) the behaviour is the base-view of the PRISMA
Component (see the base-view2 at the M1 layer, Figure 5), which is made of a set of
services to manage the state of the component type (see the meta-view1, Figure 5).
These set of services are called evolution services, because they change the
component type description. In PRISMA, these evolution services are: addAspect,
removeAspect, addPort, etc. and are “described” in the PRISMA Component meta-view
at the M2 layer (see meta-view2 at M2, Figure 5).

Figure 5. Dual view of reflective component types

The evolution services are provided and executed by each component type (in our
example, the Joint component), because the PRISMA Component base-view is part of
each component type (see Joint base-view2, at the M1 layer, Figure 5). As an
evolution service changes the component type internal representation (the meta-view),
those changes are also reflected in the component type base-view. This means that
each component instance would have its structure and behaviour updated according to
changes made on the component type meta-view. For instance, as a consequence of
the reflection relationship (see reflection, Figure 5), the execution of the evolution
service addAspect(“Saf2”) on the Joint component type meta-view will trigger the
addition of the aspect Saf2 on each instance of Joint (i.e.: Base, Shoulder, etc.).

The model described here allows the description of the dynamic adaptation process
from a high abstraction level. However, there are some issues in the reification and
reflection processes that have to be addressed in each specific implementation. The
reification process must take into account how to get the type and its internal structure
from a running component instance. The reflection process must take into account: (i)
how to spread the changes made to a component type meta-view to its component
instances, and (ii) how to change the internal structure of each component instance

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

without affecting those parts of the structure that have not been modified. For this
reason, in the next section we describe the mechanisms that our evolution
infrastructure provides to address these issues.

4 Dynamic Adaptation of Component Types

Once the concepts of Computational Reflection and MOF have been introduced, we
present in detail our dynamic adaptation proposal for aspect-oriented components.
The dynamic adaptation of the internal structure of components is triggered when any
evolution service provided by a component type is invoked. Then, the evolution
service modifies the component type description (the component type meta-view), and
the reflection relationship performs the internal adaptation of its instances.

4.1 Evolution of component types

Heterogeneous and autonomous systems require that each one of their components
implements its own adaptation mechanisms in a decentralized way. For this reason,
the main objective of our proposal is to provide internal component adaptation at
runtime in a decentralized and autonomous way. Decentralized adaptation is achieved
because there is no a centralized evolution manager that maintains and evolves all the
component types of a software architecture. Each type is the only entity that is
responsible for its instances and is the only one capable of evolving them.
Autonomous adaptation is provided in the sense that instances provide themselves
with the infrastructure necessary to be dynamically evolved in a safe way. Each
instance mantains its own state and is the only one capable of deciding the best
moment to apply the adaptations.

4.1.1 Evolution services provided by component types
The evolution services that a component type provides depend on its internal
implementation technology (in an imperative style, or in any declarative or formal
language). However, it is possible to identify those parts of the component that are
independent of technology. The main technology-independent parts of a component
are: (i) behaviour and state; (ii) ports, and (iii) internal interactions between the
different processes of the component. In PRISMA, behaviour and state are provided by
aspect composition, ports are provided by component ports, and internal interactions
are provided by weavings (they synchronize the execution of aspects). Thus, the
evolution services that a component type should provide are those that modify the
main parts of a component. We can distinguish two kinds of evolution services: Type
Evolution Services and Introspection Services.

Type Evolution Services are those related to type modification, such as additions
and removals of component parts. In PRISMA, some of the Type Evolution Services
provided are: AddAspect(), RemoveAspect(), AddPort(), RemovePort(),
AddWeaving(), and RemoveWeaving().

Introspection Services are those evolution services that allow the structure of a
component to be known. In PRISMA, some of the Introspection Services provided are:
GetAspects(), GetWeavings(), and GetPorts().

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

4.1.2 Component type reflective structure
The evolution process can be triggered by the business logic or by a user of the
system. Both the business logic of the system and the user are represented in the
architecture by means of components. Thus, the need for evolving a specific
component emerges from another component that dynamically invokes the evolution
services of the component to be updated. In our case study, the UpdSafety instance
will invoke the evolution services of the Joint type in order to introduce the new
safety requirements of the system.

However, in order to invoke the evolution services, there must be a link from the
instance layer (M0) to the model layer (M1), that is, the link between the UpdSafety
base-view and the Joint meta-view (see base and meta views in Figure 5). We call it
reification link because (i) it is an upward link between layers and (ii) it allows
instances to invoke type modification services, which are only available at an upper
layer. The reification link should be provided by any ADL on which dynamic
evolution of component types must be supported. There are several ways that a
reification link could be syntactically expressed. In PRISMA, it is described by
specifying the name of the component type that has to be evolved, followed by the dot
operator “.” and the evolution service to be invoked. For instance, the UpdSafety
instance adds the aspect “Saf2” to the Joint component this way:

Joint.AddAspect(“Saf2”)

“Joint” is the type to be evolved, and “AddAspect” is the evolution service to be
executed. The reification link is syntactically expressed by means of the “.” operator.
We have chosen this syntax because it is self-descriptive: component types provide
their own adaptation services.

Figure 6. Reflective infrastructure for component adaptation

A component type is an instance factory: it is responsible for the creation and the
destruction of its instances. For this reason, a component type manages the population
of its instances, that is, a reference to each instance that is running (see note 3, Figure
6). The instance population is usually mantained by the execution platform (i.e. the
garbage collector in Java or .NET). However, access to this information is necessary
to be able to propagate changes later. In our case study, the population of the Joint

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

component is composed of the instances that have been created in the initial
configuration: Base, Elbow, Shoulder, etc.

In addition, a component type provides its own evolution services to change itself
(see note 1, Figure 6). These services modify (or get information from) the meta-view
of the component type (see note 2, Figure 6). Each component type is responsible for
keeping the reification of its meta-view updated while it is running. Depending on the
implementation, the meta-view can be represented in an ADL or directly in platform-
dependent code (like C#). In our prototype, the reified structure is represented in C#
to make its programmed manipulation easy.

Thus, when the UpdSafety instance invokes the AddAspect(“Saf2”) evolution
service (by using a reification link, see Figure 6), the Joint meta-view is updated. As a
consequence of modifying the meta-view, changes are reflected, that is, they are made
available to the running system. This is done in two steps. The first step is to store the
changes made to the meta-view (i.e. the Joint representation) in order to make it
persistent, by generating the resulting ADL or platform-dependent code. The
immediate effect is that the aspect list {“Fun”; “Saf”} from the meta-view is
updated by {“Fun”; “Saf2”}. Thus, new instances of Joint will be created (by
calling Joint.Create(...)) using the updated type.

The following step is to propagate the changes to the type instances. As with
reification links, there must be a link from the model layer (M1) to the instance layer
(M0) in order to reflect the changes into each running instance. We call these links
reflection links (see the reflection links in Figure 6). A reflection link is created for
each component instance reference (the population).

4.2 Evolution of Component instances

Component types do not directly perform evolution changes inside their instances.
These changes have to be internally executed by each instance for two reasons.

On the one hand, each instance has to decide when and how to execute its changes
in order to perform the modification in a safe way. This safe modification is
necessary: (i) to ensure that those parts that have not undergone changes are not
affected by the modification process; (ii) to guarantee that the modification is
executed once the running transactions have finished and all internal processes reach
a safe state. For this reason, each component instance (i.e. Base, Elbow, Shoulder,
etc.) is provided with an Evolution Planner aspect, whose goal is to supervise the
update process of the component instance to which it belongs.

On the other hand, the adaptation process only makes sense at the instance-level,
because state-preserving runtime adaptations are very technology-dependent
operations (i.e. stopping threads, modifying memory areas, etc.). For this reason, each
instance is composed of two technology-dependent aspects: the Actuator, which is the
aspect that actually performs the changes on the internal component instance
structure, and the Sensor, which gives information about what is going on in the
component instance.

4.2.1 The Evolution Planner
The key aspect to achieving the dynamic adaptation of the internal structure of
component instances is to maximize the independence among the internal parts of a

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

component which may undergo changes. In this way, replacing a component internal
part has only a minimal impact on the other running parts. Those parts that are
dependent to some degree on the part being changed will only need to stop
temporarily while changes are being made.

An evolution dependency is defined as a binary relation over the set of internal
parts (P) of a component. An internal part xœ P has an evolution dependency with
other internal part y œ P, defined as EvDEP(x,y), if any change in x causes a change in
y. The total amount of possible evolution dependencies over the set of internal parts P
is defined by the mathematical permutation with repetition of P: |P|2. Since a PRISMA
component is composed of three kinds of parts (PPRISMA = {ports, weavings, aspects}),
the set of potential evolution dependencies that a PRISMA component can have is nine
(i.e.: EvDEP={ (port,aspect), (port,weaving), (port,port), …}). However, due to the
high degree of PRISMA reusability, there are actually two evolution dependencies
between the internal parts: EvDEP(aspect,port) and EvDEP(aspect, weaving). These
evolution dependencies are taken into account by the Evolution Planner.

The Evolution Planner (see note 3, Figure 7) is an aspect that has the knowledge
about how to adapt the internal structure of a component instance in a safe way. For
this reason, it is aware of what kind of evolution dependency relationships between
the component internal parts can occur when applying a dynamic change. The action
to perform is different depending on the type of change to be made: deletions,
modifications or additions. In aspect deletions, related ports and weavings need also
to be deleted. In aspect replacements or modifications, related ports and weavings
need only to be deleted if the dependency points between the aspect and the ports and
weavings are modified. In other words: (i) a port will be removed if the interface it
publishes is removed from the aspect being changed, and (ii) a weaving will be
removed if the method it intercepts/triggers is modified in the aspect being changed.
Finally, aspects, weaving and port additions can be made without compromising other
running component parts or their communications because there is still no relationship
among them.

Figure 7. Internal structure of a component instance

The Evolution Planner reflects the changes that are made to the component type
meta-view to the instance that the Evolution Planner belongs to. For this reason, the
Evolution Planner aspect provides the same evolution services as the component type,
although these services are only applied at instance-level. The adaptation changes to
be applied are received through the reflection links (see note 1, Figure 7). These
changes are the evolution services that the UpdSafety instance has applied on the
Joint component meta-view and that have been propagated to the Base Evolution
Planner through a reflection link:

RemoveAspect(“Saf”); AddAspect(“Saf2”); AddWeaving(...)

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

The Evolution Planner will apply these changes by coordinating the actions to be
performed by the Actuator and Sensor aspects. This coordination is done in
accordance with the correct adaptation protocols that it knows.

4.2.2 Actuator and Sensor
The Actuator (see note 4, Figure 7) is the aspect that performs the changes on the
running instance: by generating and linking code, by creating dynamic elements, by
invoking low-level adaptation mechanisms, etc. It provides additional services to
prepare component elements so that changes can be safely made. These services are:
StopAspect(), StopPort(), StopWeaving(), StartAspect(), StartPort(),
and StartWeaving(). These services are necessary in case an evolution dependency
is present, in order to avoid interactions between the part being changed and the
dependent parts. The Sensor (see note 2, Figure 7) provides services to supervise what
is going on: when an aspect has actually been added to the running component
instance; when a component part (i.e.: port, aspect, weaving) has been
started/stopped; etc. For these purposes, the Sensor provides additional services to get
the running state of each element: GetAspectState(), GetWeavingState(), and
GetPortState(). Both Sensor and Actuator are technology-dependent aspects
because they perform tasks that rely on how component instances are implemented.
The main advantage is that they allow us to abstract from platform-specific details.

The main services provided by the Actuator and the Sensor have been developed in
a previous work on .NET technology [25]. A PRISMA component has been developed
as a collection of different objects (aspects, ports and weavings) that: (i) can be
dynamically added or removed; (ii) are highly independent on each other; (iii) interact
with each other by using asynchronous mechanisms. Asynchronous mechanisms are
very important because they allow internal component parts (i.e.: ports, weavings and
aspects) to be stopped and restarted after changes have been made.

5 Related Works

In the last few years, there has been greater interest in evolution research in order to
reduce the time and the cost of the maintenance process and to provide a solution for
dynamic evolution. Thus, many approaches that provide mechanisms to support run-
time adaptability have been proposed. Due to space limitations in this paper, we focus
on those works related to AOSD and software architectures.

Adaptability works that are proposed by the Aspect-Oriented community usually
provide mechanisms to dynamically weave aspects to running base code1. Some
approaches are designed to support AOP for Object-Oriented Programming. These
approaches are mainly developed in Java and .NET and are platform-dependent.
SetPoint [2] allows for the dynamic addition and removal of aspects. Its weaving is
based on the evaluation of logical predicates in which the base code is marked with
meta-information that permits the evaluation of such predicates. Rapier-Loom.NET
[29] and EOS [28] both allow for the dynamic addition and removal of aspects, but

1 The base code is composed of the software units (modules, objects, components) of an

application, which have been obtained as a result of a functional decomposition

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

weaving definitions are defined inside aspects, thereby losing their reusability. The
work of Yang et al. [34] allows the definition of adaptation rules (i.e. weavings)
separately from the code, and the dynamic addition and removal of new code (i.e.
aspects) through the evaluation of such rules. However, these approaches (i) weave
aspects at the instance-level instead of at the type-level, and (ii) cannot change the
base code, they can only extend the base code with new behaviour.

Although there are also several software architecture works that address
adaptability at runtime, they are mainly focused on dynamic reconfiguration [3, 7].
Dashofy et al. [9] describe an infrastructure to build self-healing, architecture-based
software systems. Their approach consists of dynamically generating a repair plan in
order to repair the system. This repair plan is executed by a global Architecture
Evolution Manager (AEM). The AEM invokes the needed low-level evolution
services that are provided by the runtime infrastructure. The runtime infrastructure
performs the required changes in the whole system. The Rainbow Framework [4] also
describes an architecture-based approach to provide the self-adaptation of running
systems. The Architecture Layer is responsible for the adaptation process from the
moment a change requirement is detected until the change is executed. However,
these approaches use external and centralized adaptation mechanisms. These
mechanisms are appropriate for small to medium-size systems. However, large
systems need their adaptation to be managed in a decentralized way, i.e., each
subsystem must provide its own adaptation mechanisms. In this sense, Georgiadis et
al. [11] describe a decentralized infrastructure to support self-organization. However,
since each component instance stores a copy of the global architecture, the
infrastructure does not support scalability.

Hardly any of these approaches take into account the runtime internal adaptation of
components: the old running components are replaced by the new ones, thereby losing
their previous state. MARMOL [7, 8] is a formal, meta architectural model that
provides ADLs with Computational Reflection concepts [17]. The main idea is to
provide the system with an editable representation of itself. Thus, the changes made to
this representation are reflected to the running system. However, this work only
formalizes the required Reflection concepts but it does not describe the necessary
infrastructure to support these concepts. The ArchWare project [18, 21] provides a
prototype based on a formal language and offers a complete support for the dynamic
evolution of software architectures. Runtime adaptability is performed by the
Evolution Meta-Process Model [1]. Each ArchWare component is composed of a
production process (which provides the component behaviour), and an evolution
process. This evolution process evolves and controls the production process of the
component. ArchWare supports programmed evolution, by providing the
specification of the production process to the evolution process. It also supports ad-
hoc evolution by using hyper-code abstraction. However, there is no evidence about
how the ArchWare evolution process is able to evolve component types. All the
examples are always based at the instance-level.

There are approaches that provide dynamic evolution and also combine AOP and
software architectures. JAsCo [32] introduces the concept of connectors for the
weaving between the aspects and the base code, which permits a high level of aspect
reusability. In addition, it provides an expressive language that permits the definition
of relationships among aspects. However, due to the fact that aspects are woven in a

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

referential way, this proposal requires an execution platform to intercept the target
application and then insert the aspects at runtime. In a similar way, CAM/DAOP [27]
is a component-based software architecture approach that introduces aspects as
special connectors between components. It supports the separation of concerns from
the design to the implementation stages of the software life cycle. However, even
though it supports the dynamic weaving of aspects, it does not support the addition of
new aspect types at runtime.

Kephart [14] describes the Autonomic Computing (AC) vision, where software
systems are able to manage themselves, following a goal-driven approach. An
autonomic element is an entity that provides functions to monitor, analyze, plan and
execute control operations for a managed resource. AC is mainly focused on the IT-
management of resources, performance concerns and security concerns. The main
contribution of AC is that it establishes the need to build autonomous and
heterogeneous software systems to address the software complexity problem.

6 Conclusions and further work

This paper has presented a novel approach to support the runtime adaptability of
aspect-oriented components. This work takes the advantages of AOSD in software
architecture to benefit from its reuse and maintenance, which are fundamental
properties for developing complex systems. Dynamic adaptability is provided by
using computational reflection concepts, since they provide a natural way to define
self-modifying systems. In addition, this proposal describes the needed mechanisms
to modify both component types and component instances. Thanks to the evolution
infrastructure provided, running instances can trigger the modification of component
types, so that their running instances are self-adapted dynamically according to the
modifications required. Moreover, the self-adaptation process of component instances
is possible because it only affects those parts of the instance that are undergoing the
changes, thanks to the independence of PRISMA elements. The adaptation process
acquires major relevance when it is applied to non-synchronized, multi-threaded
components; for instance, two non-woven aspects of a PRISMA component are not
aware of changes in each other.

This infrastructure provides the mechanisms needed to plan and execute
adaptations. Thus, as soon as a component type is asked to make an adaptation, both
the component type and its instances plan when the changes can be performed and
then execute them. However, in order to provide the complete functionality of self-
adaptable components, the mechanisms to monitor and analyze component
adaptations should be provided by the infrastructure. These two mechanisms are
future works that will be dealt with in the future. Some future works that we plan to
complete in the short term are the following: (i) to define constraints for component
type evolution; for example, it could be useful to limit the addition of new aspects or
to limit the deletion of specific ports; and (ii) to ensure that a component type can only
be dynamically evolved by authorized components (security). We are currently
working on the self-adaptability capabilities of component instances in order to
provide a complete framework for the self-adaptability of aspect-oriented software
architectures. In addition, it is important to note that the main adaptation services

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

described in this paper are additions and removals. However, from a runtime
perspective, replace operations should also be adressed.

Acknowledgements. This work is funded by the Department of Science and
Technology (Spain) under the National Program for Research, Development and
Innovation, META project TIN2006-15175-C05-01. This work is also supported by a
FPI fellowship from Conselleria d'Educació i Ciència (Generalitat Valenciana) to C.
Costa.

References

1. Balasubramaniam, D., Morrison, R., Kirby, G. et al.: A Software Architecture Approach for
Structuring Autonomic Systems. In proc. of Workshop on the Design and Evolution of
Autonomic Application Software (DEAS 2005). St. Louis, Missouri, USA (2005) 1-7

2. Braberman, V.: The SetPoint! project, http://setpoint.codehaus.org (2006)
3. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A Survey of Self-Management in

Dynamic Software Architecture Specifications. In proc. of 1st ACM SIGSOFT Workshop
on Self-Managed Systems (WOSS’04). Newport Beach, California (2004) 28-33

4. Cheng, S., Garlan, D., Schmerl, B.: Making Self-Adaptation an Engineering Reality. In: O.
Babaoglu, M. Jelasity, A. Montresor et al. (eds.): Self-Star Properties in Complex
Information Systems. LNCS, vol. 3460. Springer, Bertinoro, Italy (2005) 158-173

5. Chitchyan, R., Rashid, A., Sawyer, P. et al.: Report Synthesizing State-of-the-Art in
Aspect-Oriented Requirements Engineering, Architectures and Design. Technical Report
AOSD-Europe Deliverable D11, AOSD-Europe-ULANC-9. Lancaster Univ., UK (2005)

6. Cuesta, C.E., Romay, M.d.P., Fuente, P.d.l., Barrio-Solárzano, M.: Architectural aspects of
architectural aspects. In: R. Morrison, & F. Oquendo (eds.): 2nd European Workshop on
Software Architecture (EWSA'05). LNCS, vol. 3527. Springer, Pisa, Italy (2005) 247-262

7. Cuesta, C.E. Dynamic Software Architecture Based on Reflection. PhD Thesis, Department
of Computer Science, University of Valladolid (2002). (In Spanish).

8. Cuesta, C.E., Fuente, P.d.l., Barrio-Solárzano, M.: Dynamic Coordination Architecture
through the use of Reflection. In proc. of 2001 ACM Symposium on Applied Computing.
Las Vegas, Nevada, United States (2001) 134-140

9. Dashofy, E.M., van der Hoek, A., Taylor, R.N.: Towards Architecture-Based Self-Healing
Systems. In proc. of First Workshop on Self-Healing Systems (WOSS'02). Charleston,
South Carolina (november 18-19 2002) 21-26

10. D'Souza, D. F., & Wills, A. C.: Objects, Components, and Frameworks with UML: the
Catalysis Approach. Object Technology Series edn. Addison-Wesley, USA (1998)

11. Georgiadis, I., Magee, J., Kramer, J.: Self-Organising Software Architectures for
Distributed Systems. In proc. of First Workshop on Self-Healing Systems (WOSS'02).
Charleston, South Carolina (November 18-19 2002) 33-38

12. Greenfield, J., Short, K., Cook, S. et al.: Software Factories: Assembling Applications with
Patterns, Models, Frameworks and Tools. Wiley (2004)

13. Harrison, W. H., Ossher, H. L., Tarr, P. L.: Asymmetrically vs. Symmetrically Organized
Paradigms for Software Composition. Technical Report RC22685 (W0212-147), Thomas J.
Watson Research Center, IBM (2002)

14. Kephart, J. O., & Chess, D. M.: The Vision of Autonomic Computing. In: Computer, Vol.
36, No. 1. IEEE Computer (2003) 41-50

15. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M. et al.: An overview of AspectJ. In: 15th
European Conference on Object-Oriented Programming (ECOOP'01). Lecture Notes in
Computer Science, Vol. 2072. Springer, London, UK (2001) 327-353

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

http://setpoint.codehaus.org/

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C. et al.: Aspect-Oriented Programming.
In: 11th European Conference on Object-Oriented Programming (ECOOP'97). Lecture
Notes in Computer Science, Vol. 1241. Springer, Jyväskylä, Finland (1997) 220-242

17. Maes, P.: Concepts and Experiments in Computational Reflection. In: SIGPLAN Not., Vol.
22, No. 12. ACM Press, New York, NY, USA (1987) 147-155

18. Morrison, R., Kirby, G., Balasubramaniam, D., Mickan, K. et al.: Support for Evolving
Software Architectures in the ArchWare ADL. In proc. of 4th Working IEEE/IFIP
Conference on Software Architecture (WICSA'04). Oslo, Norway (june 12-15 2004) 69-78

19. Object Management Group (OMG): Model Driven Architecture Guide,
http://www.omg.org/docs/omg/03-06-01.pdf (2003)

20. Object Management Group (OMG): Meta-Object Facility (MOF) 1.4 Specification. TR
formal/2002-04-03. http://www.omg.org/technology/documents/formal/mof.htm (2002)

21. Oquendo, F., Warboys, B., Morrison, R., Dindeleux, R. et al.: ArchWare: Architecting
evolvable software. In: F. Oquendo, B. Warboys, R. Morrison (eds.): First European
Workshop on Softw. Architecture (EWSA'04). LNCS, Vol. 3047. Springer (2004) 257-271

22. Pérez, J. PRISMA: Aspect-Oriented Software Architectures. PhD Thesis, Department of
Information Systems and Computation, Polytechnic University of Valencia (2006).

23. Pérez, J., Ali, N., Carsí, J.A, Ramos, I.: Designing Software Architectures with an Aspect-
Oriented Architecture Description Language. In proc. of the 9th International Symposium
on Component-Based Software Engineering (CBSE06). Lecture Notes in Computer
Science, Vol. 4063. Springer, Västerås, Sweden (2006) 123-138

24. Pérez, J., Ali, N., Carsí, J.A, Ramos, I.: Dynamic Evolution in Aspect-Oriented
Architectural Models. In: R. Morrison, & F. Oquendo (eds.): 2nd European Workshop on
Software Architecture (EWSA'05). LNCS, vol. 3527. Springer, Pisa, Italy (2005) 59-76

25. Pérez, J., Ali, N., Costa, C., Carsí, J.A, Ramos, I.: Executing Aspect-Oriented Component-
Based Software Architectures on .NET Technology. In proc. of 3rd International
Conference on .NET Technologies. Pilsen, Czech Republic (june 2005) 97-108

26. Perry, D. E., & Wolf, A. L.: Foundations for the Study of Software Architecture. In: ACM
SIGSOFT Software Engineering Notes, Vol. 17, No. 4. (1992) 40-52

27. Pinto, M., Fuentes, L., Troya, J. M.: A Dynamic Component and Aspect-Oriented Platform.
In: The Computer Journal, Vol. 48, No. 4, Oxford University Press (2005) 401-420

28. Rajan, H., & Sullivan, K.: Eos: Instance-Level Aspects for Integrated System Design. In
proc. of 9th European Software Engineering Conference held jointly with 11th ACM
SIGSOFT International Symposium on Foundations of Software Engineering. Helsinki,
Finland (september 2003) 297-306

29. Schult, W., & Polze, A.: Speed Vs. Memory Usage-an Approach to Deal with Contrary
Aspects. In proc. of 2nd Workshop on Aspects, Components, and Patterns for Infrastructure
Software (ACP4IS), International Conference on Aspect-Oriented Software Development
(AOSD). Boston, Massachusetts (2003)

30. Shaw, M., & Garlan, D.: Software Architecture: Perspectives On An Emerging Discipline.
Prentice-Hall, NJ, USA (1996)

31. Smith, B.C. Reflections and Semantics in a Procedural Language. PhD Thesis, Laboratory
for Computer Science, Massachusetts Institute of Technology (1982).

32. Suvée, D., Vanderperren, W., Jonckers, V.: JAsCo: An Aspect-Oriented Approach Tailored
for Component Based Software Development. In proc. of 2nd International Conference on
Aspect-Oriented Software Development (AOSD). Boston, Massachusetts (2003) 21-29

33. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA (1998)

34. Yang, Z., Cheng, B.H.C., Stirewalt, R.E.K. et al.: An Aspect-Oriented Approach to
Dynamic Adaptation. In proc. of First Workshop on Self-Healing Systems (WOSS'02).
Charleston, South Carolina (November 18-19 2002) 85-92

Copyright © by Springer-Verlag
http://www.springer.com/east/home?SGWID=5-102-22-173748506-0

http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/technology/documents/formal/mof.htm

	1 Introduction
	2 PRISMA
	3 MOF+Computational Reflection
	4 Dynamic Adaptation of Component Types
	5 Related Works
	6 Conclusions and further work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 50
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

